Connected Vehicles


Toyota, Microsoft, and an Army of Software Bots to Deliver Contextual Driving

A new Toyota subsidiary aims to provide drivers with autonomous contextual help via the assistance of software bot technology just announced by Microsoft. Skynet isn’t here just yet, but Toyota Connected Inc. represents just the beginning of where transportation is heading in the coming decades as we transition from personally owned vehicles to mobility as a service.

Bots, as they have become known in recent years, are basically just a relatively new type of app that usually runs on a server somewhere in the cloud. What makes bots special is their ability to tap into huge databases and take advantage of sophisticated machine learning to understand the meaning of a query. Those queries can come from either a human or another bot. One bot may collect information from any number of other bots, merging and presenting it to a human or vehicle interface at the edge of the cloud.

Cascade of Queries

A contemporary example might be a driver telling their car that they are hungry. This could trigger a cascade of queries that take your current location, stored data about your favorite kinds of food, finds a restaurant with an available table at a time based on how long it will take to arrive there, and returns a response of “Would you like a reservation at restaurant X at 6:45 p.m.?” All of this could stem automatically from that one original question with no further input from the driver.

Now imagine extending this concept 20 years into the future when we will have fleets of on-demand autonomous vehicles moving around cities, as projected in Navigant Research’s Transportation Outlook: 2025-2050 white paper. Today, if you are leaving one appointment and heading to another, you pull out a phone, open the Uber or Lyft app, and request a ride.

In 2035, the mobile communicator that has replaced your phone reads your calendar, sees you have an appointment 20 minutes away, knows your current meeting will end in 5 minutes, and automatically summons a vehicle to your location so that it pulls up as you step out onto the sidewalk with no intervention. Several bots have contributed to this function, including one that provides weather data, another with real-time and historical traffic information, one to monitor your calendar, and another to handle billing for the mobility service of your choice, all without any direct input from the rider.

Bot Creation

At its Build 2016 developer conference on March 30, Microsoft announced the release of bot software development framework to simplify the task of creating bots. Toyota Connected plans to utilize the Microsoft Azure cloud platform to provide services to its customers utilizing data from telematics and vehicle-to-external (V2X) communications systems. These communications pathways can provide drivers with real-time alerts about slippery roads when a vehicle ahead triggers an automated braking system or stability control, and can also enable automatic re-routing to avoid congestion or reduce energy consumption.

Navigant Research’s Connected Vehicles report projects that more than 80 million vehicles will be sold with V2X capability in 2025. Contextual data moving through the air between bots in vehicles and in the cloud is expected to reduce energy use, improve road safety, and generally make life more convenient for everyone.


Smartphone-Based Car Connectivity Is Likely Only an Interim Solution

I’ve been an advocate of smartphone projection infotainment solutions in cars ever since Ford introduced SYNC AppLink back in 2010. That appreciation has grown recently since the rollout of Apple CarPlay and Android Auto. Despite the vastly superior user experiences provided by Google and Apple compared to OEM designs, the coming of autonomous vehicle control systems means these almost certainly won’t be long-term solutions.

Since the debut of built-in GPS-navigation systems in the 1990s, they have been an expensive but useful option. Unfortunately, maps and especially the points-of-interest database can become rapidly outdated and typically only have one name for each entry in that database, so if a driver doesn’t get the spelling exactly right, they’ll be out of luck. The ability to draw information from the ever changing data stores of Google, Bing, and other search engines is a key advantage of smartphone navigation. Combined with cloud-based voice recognition that can provide more natural language search capabilities that recognize multiple name variations and you have a much more robust user experience.

Reliable Data

Such reliable and detailed navigational data will be a crucial component of making self-driving vehicles work reliably, especially if they are moving around without occupants as they park themselves or go to pick up passengers. Navigant Research’s Autonomous Vehicles report projects that there could be as many as 85 million vehicles capable of some degree of autonomy on the world’s roads in the next 2 decades.

True self-driving vehicles, especially those that are operated as part of mobility as a service fleets, will need connectivity and built-in maps that don’t rely on the presence of an occupant’s phone. OEMs are rapidly increasing the deployment of telematics systems into new vehicles. Every vehicle built by General Motors (GM) for sale in most major markets comes with OnStar built in, and Ford will be offering SYNC Connect on most of its fleet beginning this year. Within the next few years, these cars will be capable of searching both embedded and cloud-based navigational databases for near real-time information.

When Ford recently began testing its prototype autonomous Fusion in winter weather conditions, one key to the car’s ability to get around on snow-covered roads was the detailed 3D maps that were available onboard. The car was able to find its way around using LIDAR scanning the surroundings for landmarks, something that wouldn’t be possible using smartphone projection.

Powertrain electrification can also benefit greatly from built-in 3D maps. In 2014, the Mercedes-Benz S500 plug-in hybrid was one of the first vehicles to use knowledge of the road topography ahead to manage the balance between using battery and internal combustion power. The Kia Niro and Hyundai Ioniq hybrids going on sale this year are utilizing a similar strategy to achieve fuel efficiency improvements of approximately 1%.

Different Roles

Smartphone projection systems can certainly utilize topographical data to provide more economical routing decisions for drivers of the hundreds of millions of existing cars that will continue to operate for decades to come, and they will likely play a major role in reaching critical mass for vehicles capable of V2X communications. CarPlay and Android Auto will also continue to play a part in delivering news and entertainment to drivers, but even this will likely be supplanted by the telematics systems.

This doesn’t mean Apple and Google won’t have a part to play in future vehicles. In addition to the autonomous control systems that Google is offering to existing OEMs, the technology companies will probably be pushing for greater integration of their software directly into vehicle infotainment without the need for a connected phone.