Back in September 2014 as the ITS World Congress gathered in Detroit, General Motors (GM) CEO Mary Barra announced that in 2016, a new Cadillac model would become available with the semi-autonomous Super Cruise system. With only a handful of weeks left in 2016, we now know that the Super Cruise will debut on Cadillac’s flagship CT6 sedan, but it won’t be arriving until sometime in 2017.
A lot has happened since that announcement, and GM has put a much greater emphasis on ensuring safety as a result of the massive ignition switch recall that began early in 2014. Those process changes have led to some significant upgrades to Super Cruise in an effort to avoid the issues caused by human interactions with Tesla’s similar AutoPilot driver assist system. Navigant Research’s Autonomous Vehicles report projects that by 2020, approximately 13 million vehicles with these so-called Level 2 automation systems will be sold annually.
Geofencing
In the process of evaluating the safety of Super Cruise, one of the key differences that GM has implemented is geofencing. Since Super Cruise is designed primarily as an advanced highway driving assist system for use on limited access roadways, GM is not relying on customers to understand where it does and does not function. Instead, the system will check the navigation map—if the vehicle isn’t on a suitable road, the driver will not be able to activate it. In contrast, Tesla’s operating instructions state that AutoPilot should only be used on divided, limited access roads, but there is nothing in the system to actively prevent a driver from using the system in an urban area or any other roadway that it’s not designed for.
Similarly, Tesla doesn’t really take measures to prevent operators from taking their attention away from the road. Countless videos have been posted by Tesla drivers as they take a nap, read, or even climb in the back seat while using AutoPilot. The research conducted by Bryan Reimer and the Advanced Vehicle Technology Consortium at the Massachusetts Institute of Technology reinforces the idea that even informed drivers will get distracted while using systems like AutoPilot or Volvo’s Pilot Assist.
Improving Safety
Cadillac is installing an active driver monitoring system in the CT6, which will include more prominent alerts if the operator does not remain engaged while using Super Cruise. If the driver does not respond, the car will pull to the side of the road and come to a safe stop.
GM safety engineers have also addressed the issue of the inevitable mechanical failure. When fully autonomous vehicles arrive, they will require systems that can maintain control during a failure mode until the vehicle is safely stopped. One of the key safety failure modes for a system like Super Cruise is the electrically assisted steering.
One of the optional features on the currently available CT6 without Super Cruise is the Active Chassis Package, which includes a rear-wheel steering system to aid low-speed maneuverability and high-speed stability. This rear steering system will be included on the CT6 with Super Cruise. While the rear steering is not designed to provide the same full maneuvering capability of the normal front steering, it will be sufficient to safely steer the car to the side of the road in the event of a front steering failure.
We won’t have an opportunity to fully evaluate the capabilities of Super Cruise until sometime next year, but it does inspire some confidence that GM is at least thinking about and trying to address both human and mechanical failure modes before putting the system into customer hands.